Analyze, predict, and visualize language patterns with machine learning
Characters
0
Words
0
Sentences
0
Paragraphs
0
Comma-separated list of words to exclude
Filter n-grams using regular expressions
N-gram | Size | Frequency |
---|
Generated text will appear here...
Generated text will appear here...
Run clustering to see statistics...
Run clustering to see representative features...
Run clustering to see cluster contents...
Configure and start training to see progress...
Train model to see metrics...
Train model to see information...
Model output will appear here...
Enter text, upload files, and set basic parameters for N-gram analysis.
View N-gram frequencies, statistics, and interactive visualizations.
Generate text based on input patterns and explore word associations.
Group similar text segments and discover patterns in your data.
Create and save custom N-gram models for advanced text generation.
Implementing a simple N-gram model in JavaScript:
// Simple N-gram model implementation function createNgramModel(text, n) { const words = text.split(/\s+/); const model = {}; // Build the model for (let i = 0; i <= words.length - n; i++) { const gram = words.slice(i, i + n).join(' '); const nextWord = words[i + n]; if (!model[gram]) { model[gram] = {}; } if (nextWord) { model[gram][nextWord] = (model[gram][nextWord] || 0) + 1; } } // Convert frequencies to probabilities Object.keys(model).forEach(gram => { const total = Object.values(model[gram]) .reduce((sum, count) => sum + count, 0); Object.keys(model[gram]).forEach(word => { model[gram][word] = model[gram][word] / total; }); }); return model; }
Implementing a simple N-gram model in Python:
def create_ngram_model(text, n): words = text.split() model = {} # Build the model for i in range(len(words) - n): gram = ' '.join(words[i:i+n]) next_word = words[i+n] if gram not in model: model[gram] = {} model[gram][next_word] = model[gram].get(next_word, 0) + 1 # Convert frequencies to probabilities for gram in model: total = sum(model[gram].values()) for word in model[gram]: model[gram][word] = model[gram][word] / total return model
Implementing a simple N-gram model in Java:
import java.util.*; public Map> createNgramModel(String text, int n) { String[] words = text.split("\\s+"); Map > freqModel = new HashMap<>(); // Build frequency model for (int i = 0; i <= words.length - n - 1; i++) { StringBuilder gramBuilder = new StringBuilder(); for (int j = 0; j < n; j++) { if (j > 0) gramBuilder.append(" "); gramBuilder.append(words[i + j]); } String gram = gramBuilder.toString(); String nextWord = words[i + n]; if (!freqModel.containsKey(gram)) { freqModel.put(gram, new HashMap<>()); } Map nextWords = freqModel.get(gram); nextWords.put(nextWord, nextWords.getOrDefault(nextWord, 0) + 1); } // Convert to probabilities Map > probModel = new HashMap<>(); for (String gram : freqModel.keySet()) { Map frequencies = freqModel.get(gram); Map probabilities = new HashMap<>(); int total = 0; for (int count : frequencies.values()) { total += count; } for (String word : frequencies.keySet()) { probabilities.put(word, (double) frequencies.get(word) / total); } probModel.put(gram, probabilities); } return probModel; }
Identify patterns, word frequencies, and linguistic structure in:
Create text with similar patterns and style to:
Study language patterns and structure:
Support language learning and teaching: